
Comparing Semantic and Syntactic Methods
in Mechanized Proof Frameworks

C.J. Bell Robert Dockins Aquinas Hobor
Andrew W. Appel David Walker

Computer Science
Princeton University

Princeton, USA

Abstract

We present a comparison of semantic and syntactic proof methods for reasoning about typed assembly
languages in Coq. We make available our complete Coq developments for a simple and easily understood
benchmark system presenting both styles of soundness proof to the same interface. The syntactic proof is
standard subject reduction; the semantic proof uses Gödal Löb modal logic, shallowly embedded in Coq.
The proof style of the modal logic is flexible and facilitates experimental modifications to the underlying
machine. As an example of this flexibility, we discuss how to add fault tolerance to the list machine. In
addition, we discus how the the choice of proof methodology affects the trusted computing base of a typed
assembly language system.

Keywords: theorem proving, typed assembly language, list-machine benchmark, Coq

1 Introduction

We believe that semantic methods are useful for reasoning about typed assembly
languages but few head-to-head comparisons have been performed. We will remedy
that now. We choose a very simple typed assembly language (TAL), fix the type
system, and demonstrate both syntactic and semantic proofs of soundness in the
same logical framework.

We will show how the semantic proofs can be constructed in a modular and
extensible way. Then, we will demonstrate that extensibility by showing how to
build a fault-tolerant TAL (FTTAL) and prove it sound.

While this toy example will be wonderful for comparing how these different
systems work, it is too small to tell us about the relative behavior of syntactic
and semantic styles as they scale up the industrial strength systems. Therefore,
in section 4 we will present measurements of industrial-strength systems and draw
conclusions about how they scale.

All of the type-safety proofs we will describe start with operational semantics on
an untyped language. The type system is some set of inference rules. A syntactic

Bell, Dockins, Hobor, Appel and Walker

Type System
Specification

Typechecker
Soundness Proof

Typechecking
Algorithm

Syntax

Syntactic
Soundness

Proof

Semantic
Soundness

Proof

Operational
Semantics

List Machine
Hoare Logic

Modal
Specification

Logic

Modal Model
Library

Definition/Proof
Specification
Dependency
Implementation

Fig. 1. Proof Organization

proof of type safety defines the typing operators as an inductive syntax and defines
the inference rules of the type system as an inductive definition and proceeds by
subject reduction [23]. A semantic proof gives a denotation of each operator of the
type system as some sort of predicate on the state of the operational semantics, and
proceeds by proving each typing rule as a derived lemma from the denotations [3].
There are also intermediate styles in which the syntax of types is inductive but the
rules are proved semi-semantically. We demonstrate the purely syntactic and the
purely semantic styles, but it is a strength of our benchmark Coq development that
Adam Chlipala found it easy to demonstrate his mixed syntactic/semantic approach
in our framework [11].

2 A Semantic Type-Safety Proof

Appel and Leroy suggested the list-machine benchmark as a way to compare
machine-verified proofs involving TALs [4]. The original benchmark was used to
compare two soundness proofs, using the syntactic method, in the proof assistants
Twelf and Coq. For the research in this paper we have produced an updated version
of this benchmark; 1 one of our major goals was to examine the difference between
semantic and syntactic proof methods (in Coq). We provide fully-worked machine-
checked proofs in both the syntactic and semantic styles. We expect that most
readers will be familiar with the syntactic subject-reduction approach, and thus we
will focus here on the semantic proof.

The overall proof organization is given in Figure 1. The syntax of the 2.0 list
machine is given in Figure 2. We write α ⇀ β to indicate a finite partial map with
keys of type α and elements of type β, and A(x) = y when the map A maps key x
to a value y. The labels (Li) and values (vi) are assumed to be distinct countable
sets. The zero label L0 plays two special roles; it represents both the entry label to
the program and also a distinguished “nil” value for the branch-if-nil instruction.

The operational semantics of the list machine are listed in Figure 3. The judg-
ment (ρ, ι) Ψ7→ (ρ′, ι′) means that the machine state (ρ, ι) takes a single step to the
modified state (ρ′, ι′) in the program Ψ. The operational semantics are written
in Wright-Felleisen style, such that illegal operations have no successor and “get

1 The entire proof development is available at http://www.cs.princeton.edu/~appel/listmachine/2.0.

2

http://www.cs.princeton.edu/~appel/listmachine/2.0

Bell, Dockins, Hobor, Appel and Walker

l ::= L0,L1,L2, . . . labels

v ::= v0,v1,v2, . . . variables

a ::= l label values

| cons(a0, a1) cons cell vaues

ρ ::= v ⇀ a register banks

Ψ ::= l ⇀ ι programs

ι ::= jump v indirect jump to register v

| get-label l v load label l into v

| branch-if -nil v l if v = L0 go to l

| fetch-field v 0 v′ fetch the head of v into v′

| fetch-field v 1 v′ fetch the tail of v into v′

| cons v0 v1 v′ make a cons cell in v′

| halt stop executing

| ι0 ; ι1 sequential composition

Fig. 2. Syntax of listmachine programs

stuck.” For example, attempting to dereference a label or jump to a cons cell will
get stuck. The safely-halted state is represented by (ρ,halt) for any ρ. We say
that a program state (ρ, ι) is safe in program Ψ (written safe-stateΨ (ρ, ι)) iff after
stepping the state forward an arbitrary number of steps, it is either in the halt state
or can take another step. We then say that a program Ψ is safe iff jumping to the
entry label L0 with an arbitrary ρ results in a state that is safe in Ψ. In other
words, safe programs never get stuck.

We present a type system in Figure 4; we will prove this sound w.r.t. program
safety. The main judgment of the type system has the form Π `blocks Ψ, which
means that the whole-program typing Π holds on program Ψ. For the purposes
of our soundness proof, we consider the type constructors and the rules relating
them a specification of the typing discipline. This notion is made formal via the
Coq module system by defining a module signature. 2 Implementers of this module
signature are required to prove a safety theorem, that the whole-program typing
judgment is sufficient for program safety:

∀Ψ Π, Π `blocks Ψ → safe Ψ

We separately define a typechecking algorithm and prove that the algorithm
is sound with respect to the type system; that is, each step of the algorithm is
justified by one of the rules of the type system. This portion of the proof is agnostic
to the proof method we have chosen (semantic or syntactic). We formalize this
indifference by placing the proof in a module functor which is parameterized by an
implementation of the type system signature. The main lemma says that whenever
the typechecking algorithm returns true, there is a whole-program typing derivation:

∀Ψ Π, check(Π, Ψ) = true → Π `blocks Ψ

We can easily combine this lemma with any implementation of the type system
soundness signature to obtain the theorem, ∀Ψ Π, check(Π, Ψ) = true → safe Ψ.

All that remains is to implement the type system specification (including sound-
ness proof) to obtain a complete foundational TAL. We have done this in two dif-
ferent ways: first, using syntactic progress-and-preservation (adapted from Leroy’s
Coq development [4]), and second, using a semantic argument.

We build the semantic proof is as follows: (i) build a generic library for defining
modal specification logics for programming languages; (ii) use the library to define

2 A signature is the type of a module. A signature may include parameters, definitions, inductive types,
and the statements of theorems (but not their proofs). Parameters and the proofs of stated theorems must
be provided by modules implementing the signature.

3

Bell, Dockins, Hobor, Appel and Walker

(ρ, (ι1; ι2); ι3)
Ψ7→ (ρ, ι1; (ι2; ι3))

step-seq

ρ(v) = cons(a0, a1) ρ[v′ := a0] = ρ′

(ρ, (fetch-field v 0 v′; ι))
Ψ7→ (ρ′, ι)

step-fetch-0

ρ(v) = cons(a0, a1) ρ[v′ := a1] = ρ′

(ρ, (fetch-field v 1 v′; ι))
Ψ7→ (ρ′, ι)

step-fetch-1

ρ(v0) = a0 ρ(v1) = a1

ρ[v′ := cons(a0, a1)] = ρ′

(ρ, (cons v0 v1 v′; ι))
Ψ7→ (ρ′, ι)

step-cons

ρ(v) = l Ψ(l) = ι′

(ρ, jump v)
Ψ7→ (ρ, ι′)

step-jump

ρ[v := l] = ρ′

(ρ,get-label l v; ι)
Ψ7→ (ρ′, ι)

step-getlabel

ρ(v) = cons(a0, a1)

(ρ, (branch-if -nil v l; ι))
Ψ7→ (ρ, ι)

step-no-branch

ρ(v) = L0 Ψ(l) = ι′

(ρ, (branch-if -nil v l; ι))
Ψ7→ (ρ, ι′)

step-branch

Fig. 3. Small-step operational semantics

a specification logic specific to list-machine programs; (iii) define the Hoare triple
within the specification logic, prove the soundness of Hoare rules for each instruc-
tion, and demonstrate that the definition of the Hoare judgment is sufficient for
program safety; and (iv) show that the rules of the type system are specializations
of the Hoare rules and the main typing judgment is sufficient for safety.

Step (i): Modal Model Library. We define a shallow embedding of a hetero-
geneous multimodal logic [13] to use as the specification logic. We define statements
of the specification logic to be predicates on worlds. In Coq, this means statements
of the logic are defined as W → Prop, where Prop is the type of Coq propositions
and W is some abstract type, which is later instantiated by the library consumer.

Using this technique we obtain a powerful system which includes: all the usual
logical connectives of higher-order logic including impredicative quantification; a
suite of useful modal operators; and a powerful recursion operator. Among the
modal operators defined by the library is the important “later” operator (written
.), where .p means that the proposition p holds at all times strictly in the future.
This operator is important for defining recursive propositions and for solving certain
kinds of circularity problems that arise from, e.g., impredicative reference types [5].
The library also defines a related operator called “necessarily” (written 2) which
means that a predicate holds now and in the future.

Step (ii): Modal Specification Logic. We specialize the generic library to
the list-machine setting by defining a suitable set of worlds. For the list machine, we
define worlds as tuples of the form (n, ρ, a), where the natural number n is the “age”
of the world, ρ is the register bank, and a is a value. The age is a proof artifact
that interacts with the operators . and 2; the register bank and value components
allow our logic to express statements of interest in the problem domain.

We can view predicates that state properties of values as types. In other words,
we use the specification logic to give a direct semantics for the types of our type
system. For example, we can define the semantics of list types as follows:

nil := λ(n, ρ, v). v = L0

pair p q := λ(n, ρ, v). ∃v1 v2, v = cons(v1, v2) ∧ ∀ρ′, (.p)(n, ρ′, v1) ∧ (.q)(n, ρ′, v2)
list t := µX.nil || pair t X

listcons t := pair t (list t)

4

Bell, Dockins, Hobor, Appel and Walker

τ ::= nil The value L0

| list τ List of τ

| listcons τ Non-nil list of τ

Γ ::= v ⇀ τ Type environments

Π ::= l ⇀ Γ Program typings

Subtyping

τ ⊂ τ sub-refl

nil ⊂ list τ
sub-nil

τ ⊂ τ ′

list τ ⊂ list τ ′ sub-list

τ ⊂ τ ′

listcons τ ⊂ list τ ′ sub-listmixed

τ ⊂ τ ′

listcons τ ⊂ listcons τ ′ sub-listcons

∀l, τ0. Γ0(l) = τ0 → ∃τ1. Γ1(l) = τ1 ∧ τ0 ⊂ τ1
Γ0 ⊂ Γ1

sub-env

Instruction typings. Individual instructions are typed by a judgement Π `instr Γ{ι}Γ′. The intuition is
that, under program-typing Π, the Hoare triple Γ{ι}Γ′ relates precondition Γ to postcondition Γ′.

Π `instr Γ{ι1}Γ′ Π `instr Γ′{ι2}Γ′′

Π `instr Γ{ι1; ι2}Γ′′ chk-seq

Γ(v) = list τ Π(l) = Γ1 Γ′ ⊂ Γ1

Γ[v := nil] = Γ′ Γ[v := listcons τ] = Γ′′

Π `instr Γ{branch-if -nil v l}Γ′′ chk-br-list

Γ(v) = listcons τ

Π `instr Γ{branch-if -nil v l}Γ chk-br-cons

Γ(v) = nil Π(l) = Γ1 Γ ⊂ Γ1

Π `instr Γ{branch-if -nil v l}Γ′ chk-br-nil

Γ[v := nil] = Γ′

Π `instr Γ{get-label L0 v}Γ′ chk-getnil

Γ(v) = listcons τ Γ[v′ := τ] = Γ′

Π `instr Γ{fetch-field v 0 v′}Γ′ chk-fetch-0

Γ(v) = listcons τ Γ[v′ := list τ] = Γ′

Π `instr Γ{fetch-field v 1 v′}Γ′ chk-fetch-1

Γ(v0) = τ0 τ0 ⊂ τ ′ τ1 ⊂ list τ ′

Γ(v1) = τ1 Γ[v := listcons τ ′] = Γ′

Π `instr Γ{cons v0 v1 v}Γ′ chk-cons

Block typings. A block is an instruction that does not (statically) continue with another instruction,
because it ends with a halt or a jump.

Π; Γ `block halt
chk-block-halt

Π `instr Γ{ι1}Γ′ Π; Γ′ `block ι2

Π; Γ `block ι1; ι2
chk-block-seq

Π(l) = Γ1 Γ ⊂ Γ1 v /∈ dom(Γ1)

Π; Γ `block (get-label l v; jump v)
chk-block-jump

Program typings. The judgement Π `blocks Ψ means that the blocks Ψ are well-typed in the program-
typing Π.

∀l, ι. Ψ(l) = ι→ ∃Γ. Π(l) = Γ ∧Π; Γ `block ι

Π `blocks Ψ
chk-blocks

Fig. 4. Simple type system

Here “nil” is a predicate that states that the value component of the world is exactly
the value L0, and “pair p q” is a predicate that states that the value component of
the world is a cons cell (v0, v1) where p holds on v0 and q holds on v1. Lists are
then defined in a straightforward way via the recursion operator (here the symbol
|| is disjunction at the level of the embedded logic). More elaborate predicates can
be built up in a similar way for, e.g., continuations and whole-program typings.

Step (iii): List-machine Hoare Logic. Now that we have defined the speci-
fication logic and the semantics of the necessary type constructors, we need a way
to show that the typing rules are sound. To do this we first define a general Hoare
logic. It turns out that we can define the Hoare triple for this language via reduc-
tion to a more primitive notion of guarding [2]. We say that a predicate p “guards”
instruction i if it is safe to execute i whenever p holds (in program Ψ). Concretely

5

Bell, Dockins, Hobor, Appel and Walker

(where ⇒ stands for implication lifted into the specification logic):

safe-instrΨ i := λ(n, ρ, v). safe-stateΨ(ρ, i)
guardsΨ p i := p⇒ safe-instrΨi

hoareΨ,Π̂ p i q := .Π̂ ⇒ (∀i′, guardsΨ (2q) i′ ⇒ guardsΨ (2p) (i; i′))

Recall that safe-stateΨ (ρ, i) holds when the state (ρ, i) cannot lead to a stuck state.
In the definition of the Hoare triple, Π̂ stands for a proposition stating preconditions
for jumping to labels; it is the semantic counterpart of the whole-program typing
Π and is used when reasoning about control-flow instructions. Notice that we only
assume that these preconditions are correct “later.” This restriction is important for
proving whole-program correctness in the presence of arbitrary mutually-recursive
control flow (see section 11.1 of Appel et. al. [5]).

Now we can prove lemmas corresponding to the Hoare rules for the list machine.
The proofs for straight-line instructions proceed by unfolding the definition of the
Hoare triple and showing how executing the instruction i, when p holds, is sufficient
to show that q holds on the resulting state. Control-flow instructions use the pre-
conditions stated in Π̂, relying on the fact that executing a jump consumes time,
which allows us to “unpack” the Π̂ from under the later operator.

Step (iv): Semantic Soundness Proof. Once we have proved the correctness
of the Hoare rules, we can use them to justify the rules of our type system. This
almost always involves using a weakening lemma to show that the typing rule is
just a weaker form of the Hoare rule; the proofs are usually straightforward.

Finally, we rely on the semantic definitions of the type judgments to conclude
that the type system is sufficient for safety. Because we defined the Hoare triple
in terms of guarding (which in turn is defined in terms of program safety), it is
easy to show that derivations constructed using the type system (and therefore the
underlying Hoare logic) are sufficient for program safety.

One could be forgiven for thinking that this approach is needlessly complicated
for proving the soundness of a simple typechecker. It is true that the syntactic
approach to proving soundness for this typechecker is quite a bit simpler and shorter.
However, the semantic proof accomplishes more; it proves soundness for a general
Hoare logic. This general logic can be directly reused for proofs involving other type
systems. In other words, steps (i), (ii) and (iii) in the above list are reusable. This,
we claim, is a major advantage of the semantic methods.

As an example, we have proved the soundness of a more advanced system than
the simple one presented here; the advanced type system is able to typecheck more
flexible uses of label values and typechecks a strictly larger set of programs. Its
soundness proof directly reuses the Hoare logic and differs from the soundness proof
for the simple type system by less than 200 lines of proof script. 3

One notable difference between the semantic and syntactic approaches is that,
in a syntactic system, typing rules are axioms (typically introduced by an inductive
definition) whereas in a semantic proof, typing rules are simply lemmas proved via
the definition of the typing judgment. This may have a significant impact on the
trusted computing base of the system, as we discuss in section 4.

3 This count does not include the soundness proof for the typechecking algorithm because it is independent
of the proof method.

6

Bell, Dockins, Hobor, Appel and Walker

While constructing the simple type system soundness proofs, we observed an
interesting difference in the areas which required the most mental energy. In the
syntactic proof, intermediate lemmas proceed by structural induction. Finding
the correct induction hypothesis can sometimes be difficult and may require tricks
like generalizing the hypothesis, complete induction on depths, proving two related
lemmas simultaneously, etc. All these techniques are well known, but discovering
the correct application to prove a theorem of interest is something of an art.

In contrast, mental energy in the the semantic proof is concentrated primarily
on getting definitions correct. For example, the definition of the “pair” predicate is
rather subtle; it includes application of the . operator to ensure contractiveness, thus
guaranteeing a fixed point. Unlike inductive proofs, the bag of tricks for “semantic”
proofs is not well known. Perhaps a useful battery of techniques will emerge as we
acquire additional experience with this proof method.

3 An Example: Fault-Tolerant List Machine

A transient hardware fault occurs when an energetic particle strikes a transistor,
causing it to change state. As a consequence, bits in registers, memory, or other pro-
cessing components may be corrupted [9]. While infrequent on most current hard-
ware, such faults have resulted in serious damage in well-publicized cases [15,9,24].

In order to provide software reliability in the face of transient faults, a number of
researchers have proposed developing compilers that insert additional checking code
into programs for the purpose of guaranteeing fault tolerance [16,20]. Unfortunately,
it is difficult to validate the correctness of these compilers. One cannot tell by
running the program whether it is properly fault tolerant because, in general, it will
appear to work just fine.

Therefore, Perry et al. [18] developed a special kind of proof-carrying code that
guarantees that the output of a compiler is properly fault tolerant. That is, they
developed an FTTAL. They prove this sound, on paper, using syntactic techniques.

In this section, we will explain how to extend the operational semantics and
type system for the list machine so as to model and check fault-tolerant code.
Our fault-tolerant type system is simpler and weaker than the work done by Perry
[18]. Nevertheless, the extension is quite a radical departure from the originally
anticipated goals of the list machine, and consequently, it provides an interesting
and challenging test case for the experimental framework.

3.1 Overview

The first step in the development of a framework for fault tolerance is to decide upon
the fault model. In our case, we will adopt the Single Event Upset (SEU) model,
which assumes that no more than one fault will occur during a run of the program.
In addition, we will assume that faults only occur in machine registers. These are
relatively standard assumptions in the literature (single-bit errors in memory are
adequately detected by ECC). These assumptions will be modeled by altering the
operational semantics of the list machine, as discussed in the upcoming sections.

Once we understand the fault model, we must come up with a fault-tolerant

7

Bell, Dockins, Hobor, Appel and Walker

c ::= Green | Blue
ι ::= jump vG vB | get-label c l v | branch-if -nil vG vB l | fetch-field v 0 v′ | fetch-field v 1 v′

| cons v0 v1 v
′ | halt | fault | ι0 ; ι1

Fig. 5. Syntax of fault-tolerant list machine

ρ(vG) = l ρ(vB) = l Ψ(l) = ι′

(ρ, jump vG vB)
Ψ7→ (ρ, ι′)

step-jump
ρ(vG) = cons(a0, a1) ρ(vB) = cons(a0, a1)

(ρ, (branch-if -nil vG vB l; ι))
Ψ7→ (ρ, ι)

step-no-branch

ρ(vG) = l ρ(vB) = l′ l 6= l′

(ρ, jump vG vB)
Ψ7→ (ρ, fault)

step-jump-fault
ρ(vG) = L0 ρ(vB) = L0 Ψ(l) = ι′

(ρ, (branch-if -nil vG vB l; ι))
Ψ7→ (ρ, ι′)

step-branch

ρ[v := l] = ρ′

(ρ,get-label c l v; ι)
Ψ7→ (ρ′, ι)

step-getlabel
ρ(vG) 6= ρ(vB)

(ρ, (branch-if -nil vG vB l; ι))
Ψ7→ (ρ, fault)

step-branch-fault

Fig. 6. Small-step fault tolerant operational semantics. Only the modified rules are shown.

solution. In our case, the solution is to compute every observable program result
twice and to check the two results against one another. If we detect a difference
between the two results, we abort the program and signal an error. 4 In order for this
solution to work properly, neither of the two redundant computations must depend
upon the other. For example, if computation 1 produces a value, then computation
2 is not allowed to use that value. Otherwise, a single fault can percolate to both
computations and avoid detection. Hence, the central job of the type system for
fault tolerance is to guarantee the independence of the two computations. If it does
so correctly, it will guarantee a strong reliability property: If a fault-free run of a
program successfully executes to completion and delivers a final value a, then in any
faulty run of that program, either the fault will be (i) detected and the program will
terminate in the special “fault state”, or (ii) completely masked and the program
will terminate successfully and deliver the correct final value a.

We have the type system assign a color, either blue or green, to each computa-
tion. Blue values are created and manipulated only by computation 1 while green
values are created and manipulated only by computation 2, ensuring that the two
redundant computations are independent.

3.2 The Modified List Machine

We use a slightly modified syntax for the fault-tolerant list machine in Figure 5.
Aside from branching instructions, most instructions remain the same because we
generally ensure fault tolerance by duplicating instructions rather than relying on
hardware support. Control flow, however, cannot be protected via this mechanism.

Consider a source language statement, if e 6= nil then A else B. In list-
machine assembly language, there will be a block of instructions computing e into
some register v, followed by branch-if -nil v l. In order to protect this branch from
the influence of a fault, we compute another value v′ independently of v. In the SEU

4 More sophisticated systems both detect and recover from faults. We have chosen to omit recovery
procedures in our toy example.

8

Bell, Dockins, Hobor, Appel and Walker

Γ ::= v ⇀ (C, τ) Type environments

Γ(vG) = (G, listcons τ)

Γ(vB) = (B, listcons τ)

Π `instr Γ{branch-if -nil vG vB l}Γ chk-br-cons

Γ(vG) = (G, nil) Π(l) = Γ1
Γ(vB) = (B, nil) Γ ⊂ Γ1

Π `instr Γ{branch-if -nil vG vB l}Γ′ chk-br-nil

Γ[v := (c, nil)] = Γ′

Π `instr Γ{get-label c L0 v}Γ′ chk-getnil

Γ(v) = (c, listcons τ) Γ[v′ := (c, τ)] = Γ′

Π `instr Γ{fetch-field v 0 v′}Γ′ chk-fetch-0

Γ(v) = (c, listcons τ) Γ[v′ := (c, list τ)] = Γ′

Π `instr Γ{fetch-field v 1 v′}Γ′ chk-fetch-1

Γ(v0) = (c, τ0) τ0 ⊂ τ ′ τ1 ⊂ list τ ′

Γ(v1) = (c, τ1) Γ[v := (c, listcons τ ′)] = Γ′

Π `instr Γ{cons v0 v1 v}Γ′ chk-cons

Γ(vG) = (G, list τ) Π(l) = Γ1 Γ[vG := (G, nil)][vB := (B, nil)] = Γ′

Γ(vB) = (B, list τ) Γ′ ⊂ Γ1 Γ[vG := (G, listcons τ)][vB := (B, listcons τ)] = Γ′′

Π `instr Γ{branch-if -nil vG vB l}Γ′′ chk-br-list

Π(l) = Γ1 Γ ⊂ Γ1 vG /∈ dom(Γ1) vB /∈ dom(Γ1)

Π; Γ `block (get-label G l vG; get-label B l vB ; jump vG vB)
chk-block-jump

Fig. 7. Fault-tolerant type system. Only the modified rules are shown.

model, only one of these registers can be corrupt; if the two registers are equal, then
no fault could have taken place. We wish to test v = v′ for fault detection and we
wish to test v = L0 to implement the program logic. If we do these tests sequentially,
we might be so unlucky as to experience a bit flip in between the two instructions.
Therefore the fault-tolerant list machine has a special branch instruction of the form
branch-if -nil vG vB l, where v and v′ are now vG and vB, to do both comparisons at
once. It can have three outcomes as shown in Figure 6. If vG 6= vB then it transitions
to the fault state (step-branch-fault). If vG = vB = L0, the instruction will
jump to label l (step-branch), otherwise it will fall through (step-no-branch).
The fault state is reached only when both a bit flip has occurred and when some
fault-tolerant code has detected the resulting inconsistency. With the introduction
of fault, we extend the definition of a safe-stateΨ to include (ρ, fault) so that
detecting a fault is considered safe. While our notation implies that vG and vB
should be colored green and blue respectively, this is enforced by the type system
and not the machine. The same concept applies to the jump instruction.

In Figure 5, we also annotate the get-label instruction with a color even though
it does not control program flow. This color is ignored by the machine but is used
by the typechecker to infer the register’s color.

3.3 The Modified Typechecking Algorithm

Section 3.1 introduced the need to have two independent, but equal, computations to
detect faults. This is achieved by assigning a color to each of the two computations,
resulting in an extended typing environment where each register maps to a color in
addition to its stored type, shown in Figure 7. A register receives its color when
a literal value is loaded: rule chk-getnil. Due to a simplification in the type
system, we do not assign a color to registers in the chk-block-jump rule because
the registers are not added to the typing environment.

For other instructions, we maintain the independence of one computation from

9

Bell, Dockins, Hobor, Appel and Walker

(ρ, ι)
Ψ7→ (ρ′, ι′)

(ρ, ι)
Ψ7→z (ρ′, ι′)

step-no-fault
ρ[v := a] = ρ′ (ρ′, ι)

Ψ7→ (ρ′′, ι′)

(ρ, ι)
Ψ7→z (ρ′′, ι′)

step-fault

(ρ1, ι1)
Ψ7→ (ρ′

1, ι
′
1) (ρ2, ι2)

Ψ7→z (ρ′
2, ι

′
2)

(ρ1, ι1, ρ2, ι2)
Ψ
 (ρ′

1, ι
′
1, ρ

′
2, ι

′
2)

step-ft

Fig. 8. Additional operational semantics to model faults

the other with typing rules that require the source and destination registers to have
the same color. An example of this is rule chk-cons. Since we require branch
instructions to use a value computed twice independently, their typing rules, such
as chk-br-list, require that one register be green and the other blue. However,
the typechecker does not guarantee that the two values, while independent, will be
equal in the absence of a fault.

3.4 Fault Tolerance

For a well-typed program, we must prove two main theorems: (i) a fault does not
induce undefined behavior and (ii) faulty executions simulate fault-free executions.
Simulation is satisfied when the register stores of a faulty and fault-free run are
equal except for, in the presence of a fault, registers of a particular color (the color
of the register that was corrupted by the fault).

In order to prove fault tolerance, which is a simulation relation between faulty
and non-faulty runs of a program, we construct new operational semantics for the
proofs. These new semantics are presented in Figure 8. In most proofs, we replace
(ρ, ι) Ψ7→ (ρ′, ι′) with (ρ1, ι1, ρ2, ι2) Ψ

 (ρ′1, ι
′
1, ρ
′
2, ι
′
2) such that the proofs deal with

both fault free and potentially faulty steps at the same time. When considering
multiple steps, we require that ι1 = ι2 and either ι′1 = ι′2 or ι′2 = fault. That is,
until a fault is detected, the sequence of instructions executed by the faulty run is
the same as the fault-free run. Finally, ρ′1 must simulate ρ′2 if ρ1 simulates ρ2.

As a result, we must modify various safety proofs to deal with both faulty and
fault-free computations. This mostly results in adding redundant cases to each
proof except where the presence of a fault may be detected. So far, this has been
a straighforward process. However, these proofs have yet to be completed; the
remainder is a work in progress.

4 How Semantic and Syntactic Methods Scale

How do the syntactic and semantic methods scale to industrial-strength TALs? We
cannot use the list-machine TAL to answer that question, as it’s far too simple.
Instead we analyze two large projects, the Princeton Foundational Proof-Carrying
Code (FPCC) project [1], and the Carnegie Mellon ConCert project [12]. Each of
these projects included a TAL for ML compiled to a real machine (Sparc, and a
subset of x86, respectively). A big difference between the two approaches, however,
was that FPCC used semantic methods to prove its type system sound, whereas
ConCert used syntactic methods.

It is difficult to compare the complexities of two large software artifacts. Large

10

Bell, Dockins, Hobor, Appel and Walker

projects can differ in many ways: goals, design choices (such as the choice of se-
mantic or syntactic methods), implementation language, “coding” styles, and many
others. Fortunately, FPCC and ConCert are similar enough to provide a useful com-
parison. The stated goal of both FPCC and ConCert was to guarantee a memory
safety property for untrusted code. Each project was developed in the Twelf proof
assistant, so it is reasonable to make quantitative measures of the developments.

What should be measured? One obvious and important metric is the manpower
required to produce the projects. FPCC took more graduate students more time to
produce, but quantifying how much more time is difficult due to a lack of accurate
timekeeping methods. One key reason why it took the FPCC researchers longer
to complete their proof obligations was that it was necessary to invent completely
new semantic techniques, including a semantic model to handle the combination of
mutable references, contravariant recursive types, and impredicative polymorphism.
In contrast, ConCert was able to rely on “off-the-shelf” syntactic techniques, devel-
oped by the programming language community over the last ten to fifteen years to
handle such features. The ability to use such off-the-shelf methods gives syntactic
methods an advantage at the present time, but continuing research on semantic
methods may mitigate this advantage in the future. In particular, while the FPCC
model was challenging and time-consuming to develop the first time, many of the
ideas and even the proofs themselves are highly reusable. Already, the Concurrent
C minor project [14] has seen great cost savings from the ability to re-use semantic
libraries.

The nature of the projects themselves suggests another possibility. Consider
a proof P of a theorem T , in a logic L, checked by a machine M . The size and
difficulty of producing the proof P is important because it affects the human cost
of verification, and was discussed in the previous paragraph. However, unlike T , L
and M , P does not have to be trusted – errors in P will be caught by M . On the
other hand, errors in T (the statement of the theorem), L (the rules of a logic), or
M (the implementation of a checker) will not be caught by any mechanical verifier.
These three components form the system’s trusted computing base (TCB).

Fortunately, both FPCC and ConCert are organized such that the size of T , L
and M are orders of magnitude smaller than P , and hence, relative to the overall
size of the projects, the TCB is small. Indeed, unlike most other PCC systems, both
ConCert and FPCC were foundational systems, meaning that they were developed
to minimize the difficulty of trusting the TCB. Therefore, it is interesting to compare
the TCBs of the two systems and we do so here.

FPCC and ConCert both guarantee a memory safety property. That is, the
theorem T is memory safety (and thus this theorem must include a specification
of the instruction-set semantics of the target machine). Both systems guarantee
memory safety by providing a type system and proving that well-typed programs
obey the memory policy. That is, the specification of the type system is part of the
proof P , and is not part of the specification of T . In other words, the type system
was only used to prove a program was consistent with the memory policy, meaning
that the policy had to be trusted, but not the type system. In each system, T
includes: axioms relevant to machine computation (e.g. the definition of modular
arithmetic); a machine definition (of the SPARC for FPCC or a subset of x86 for

11

Bell, Dockins, Hobor, Appel and Walker

Axioms Machine Def. Policy Runtime Checker

FPCC 6,136 16,624 1,198 197 4,353

ConCert 2,808 16,577 524 3,973 326,937

Fig. 9. Token count of TCB components

ConCert), a policy (the statement of of the memory safety property), and a runtime
system (used by secured programs).

The logic LFPCC is LF; the logic LConCert is LF metatheory, which is not the
same thing! Although FPCC was developed in Twelf, its theorems are stated as LF
types, and all proofs are constructed as λ-expressions satisfying those types. That
is, proof checking is just LF typechecking. That is, MFPCC is just a typechecker.
As part of the Princeton FPCC project, the Flit typechecker was developed. Flit is
a very minimal LF typechecker written in 800 lines of C using no libraries [6]. In
contrast, ConCert uses the metatheory of Twelf as its logic: modes, totality, and
coverage checking. Thus, MConCert is a substantially larger software system.

At the moment, no minimal metatheorem checker comparable to Flit exists.
However we speculate that since, in general, checking metatheorems is harder than
checking theorems, such a system would be substantially larger than Flit.

The simplest meaningful measurement of TCB complexity is a token count (ig-
noring comments). While this measure is not ideal, it does help to correct for
differences in style more than line or character counts do. Moreover, the size of a
software artifact is clearly proportional, ceteris paribus, to the difficulty in trusting
that artifact. The results of this count are contained in Figure 9.

Before taking into account the checkers, the TCBs of the two systems are com-
parable in size. For further analysis, the TCBs have been broken into roughly
comparable parts. The axioms of FPCC are approximately twice as long as for
ConCert 5 , but this is due to the fact that ConCert is taking advantage of a much
more powerful checker. The machine definitions are almost exactly the same size.
FPCC has a moderately larger policy than ConCert. ConCert has a substantially
larger runtime system, but it supports more features, such as a garbage collector
and various grid computing primitives. Therefore, before the checker is taken into
account, the two are almost exactly equal (24,155 for FPCC vs. 24,001 for ConCert).

From memory safety to type safety. What additions would be required if
we wished to enforce a richer policy than memory safety, such as guaranteeing that
modules obeyed their type interfaces? Two basic changes are required. First, we
must update the policy to add this additional property. Furthermore, the policy
now makes reference to the type system: if we want to say that a certain value is an
“int→bool”, we must know how ints and bools are represented, as well as the calling
conventions for functions. So we must include a definition of the type system in the
trusted base (in T , not in P). Would it be better to include a semantic definition
or a syntactic definition of the type system?

A key observation is that the definition size of the two methods scales differently.
In general, a semantic system requires a new definition (the denotation of a type
operator) whenever a new type constructor is added, whereas a syntactic system

5 Of course, strictly speaking ConCert has no axioms in the sense that FPCC does; but we write “axioms”
to include foundational definitions such as the construction of modular arithmetic.

12

Bell, Dockins, Hobor, Appel and Walker

Semantic FPCC Syntactic FPCC ConCert (XTALT) ConCert (TALT)

14,063 29,983 22,464 25,129

Fig. 10. Token count for type system definitions

requires a new definition (a typing rule) whenever a new expression constructor is
added. In a toy system, it is common for the number of expression constructors to be
limited to just those which can showcase a new typing feature, but in a real setting
such as the SPARC processor, the number of expression constructors dwarfs the
number of type constructors 6 . Since FPCC defines its type system semantically,
whereas ConCert defines its syntactically, we can see how these factors actually
balance in a large system.

To produce this measurement, we identified the type operators (for FPCC) and
typing rules (for ConCert). We developed a proof-dependency tool to isolate all of
the definitions on which those definitions depended, and removed all unneeded def-
initions and comments before measuring. For additional comparison, we measured
the FPCC type system as though it were syntactic by taking the typing lemmas
(that is, the typing rules of the FPCC type system), stripping the soundness proofs
to get typing rules as typically defined in syntactic systems, and measuring the
resulting “axioms”. The resulting measurements are contained in Figure 10.

The apples-to-apples comparison is between Syntactic FPCC and TALT: both
of these are syntax-directed type systems; and indeed they have similar sizes 7 . The
difference between 30k and 25k for the syntactic systems is likely explained by the
different SML compilers and machine subsets that they cover.

The FPCC semantic definitions are about half the size of the syntactic defini-
tions. We believe that this is explained by the scaling law. Furthermore, suppose
each system (FPCC and ConCert) were to be extended to cover more machine
instructions generated by a fancier compiler. The scaling law would drive the com-
parison even more in favor of the semantic methods, since the syntactic type system
definitions would grow (more typing rules for more instructions) while the semantic
ones would remain constant. Therefore we conclude that in large, real systems where
there is a desire to guarantee a typing policy, defining a type system semantically
instead of syntactically may result in a substantially smaller TCB.

5 Related Work

Perhaps the best-known work in the area of mechanized programming language
metatheory is the POPLmark challenge [8]. The concrete problem posed in
the POPLmark challenge differs from the work considered here considerably;
POPLmark focuses on the metatheory of F<: whereas we consider TALs. How-
ever, both are different means to the same end, the mechanization of metatheory.

6 One might think that an average semantic type definition would be larger than the average typing
judgment. This is often the case for toy systems; however, in realistic TALs the typing rules often have a
large number of complicated premises and it is not clear that the rules are simpler than the type definitions.
7 XTALT is simpler than TALT because it is not obliged to be syntax-directed. On the other hand there
is no soundness proof for TALT; instead, the untrusted TALT is used (for each program) to produce a
derivation in XTALT, and it is XTALT that has a soundness proof. Since FPCC is both sound and syntax-
directed, derivations are not necessary in this way.

13

Bell, Dockins, Hobor, Appel and Walker

Many groups have investigated software techniques for improving program reli-
ability in the presence of transient faults [7,22,17,10,16,21,20]. In an effort to better
understand major semantic issues, formal models of the problem have been studied
in the context of the lambda calculus [20], and TALs [16]. The fault-tolerant list
machine presented here follows in a similar vein.

6 Conclusion

The list-machine 2.0 benchmark serves as a vehicle for communicating in an acces-
sible and concrete way how semantic proofs work, facilitates a direct head-to-head
comparison between different proof methods, and provides an experiment testbed
for innovations like fault tolerance.

After our experiments with semantic FTTAL proofs, we hope to extend these
techniques beyond the list machine to more realistic systems and real compilers that
generate fault-tolerant code. Perry et al. have described more realistic FTTALs,
but with paper proofs instead of machine-checked proofs [18,19].

The semantic proof used by the list machine is potentially more scalable for
larger, more complex systems, as demonstrated by the comparison between FPCC
and ConCert. Syntactic proof techniques have been much studied over the past 10-
15 years. As a consequence, the proof techniques are well known and it is relatively
easy for experts to hammer out proofs of many complex systems. On the other
hand, semantic techniques have been less well studied over the same time period.
Consequently, coming up with unified semantic models for various features including
references, polymorphism and concurrency was initially very challenging and time-
consuming for the FPCC framework. However, once the overhead of implementing
these basic semantic models is complete, extending semantic proofs requires less
work. With these new techniques in hand, as well as reusable, higher-level libraries,
such as Appel et al.’s modal model [5], future projects will have great advantages
in terms of both TCB size and proof engineering effort.

Semantic models for features such as references usually require a syntactic el-
ement. Yet certain advanced type-theoretic concepts, like dependent types, resist
an entirely syntactic analysis. In the end, complex future systems may well see a
blending of both semantic and syntactic techniques.

Acknowledgments. We thank the program committee of the PCC workshop
for excellent feedback on our work. This research is funded in part by NSF awards
CNS-0627650 and CCF-0540914. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not necessarily
reflect the views of the NSF.

References

[1] A. W. Appel. Foundational proof-carrying code. In Symp. on Logic in Computer Science (LICS ’01),
pages 247–258. IEEE, 2001.

[2] A. W. Appel and S. Blazy. Separation logic for small-step C minor. In 20th International Conference
on Theorem Proving in Higher-Order Logics (TPHOLs 2007), 2007.

[3] A. W. Appel and A. P. Felty. A semantic model of types and machine instructions for proof-carrying
code. In POPL ’00: Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on Principles of

14

Bell, Dockins, Hobor, Appel and Walker

Programming Languages, pages 243–253, 2000.

[4] A. W. Appel and X. Leroy. A list-machine benchmark for mechanized metatheory. Technical Report
RR-5914, INRIA, May 2006.

[5] A. W. Appel, P.-A. Melliès, C. D. Richards, and J. Vouillon. A very modal model of a modern, major,
general type system. In Proc. 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’07), pages 109–122, Jan. 2007.

[6] A. W. Appel, N. G. Michael, A. Stump, and R. Virga. A trustworthy proof checker. Journal of
Automated Reasoning, 31:231–260, 2003.

[7] A. Avizienis and L. Chen. On the implementation of nversion programming for software fault tolerance
during execution. In COMPSAC, pages 149–155, 1977.

[8] B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce, P. Sewell, D. Vytiniotis,
G. Washburn, S. Weirich, and S. Zdancewic. Mechanized metatheory for the masses: The POPLmark
challenge. In International Conference on Theorem Proving in Higher Order Logics (TPHOLs), August
2005.

[9] R. C. Baumann. Soft errors in commercial semiconductor technology: Overview and scaling trends.
In IEEE 2002 Reliability Physics Tutorial Notes, Reliability Fundamentals, pages 121 01.1–121 01.14,
April 2002.

[10] J. Chang, G. A. Reis, and D. I. August. Automatic instruction-level software-only recovery methods.
In Proceedings of the International Conference on Dependable Systems and Networks (DSN), June
2006.

[11] A. Chlipala. E-mail communication via the POPLmark mailing list. http://lists.seas.upenn.edu/
pipermail/poplmark/2008-April/000411.html.

[12] K. Crary. Toward a foundational typed assembly language. In POPL ’03: Proceedings of the 30th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 198–212, New
York, NY, USA, 2003. ACM.

[13] R. Dockins, A. W. Appel, and A. Hobor. Multimodal separation logic for reasoning about operational
semantics. In Proc. 24th Conference on the Mathematical Foundations of Programming Semantics,
May 2008. To appear.

[14] A. Hobor, A. W. Appel, and F. Zappa Nardelli. Oracle semantics for concurrent separation logic. In
Proc. European Symp. on Programming (ESOP 2008), 2008. to appear.

[15] S. E. Michalak, K. W. Harris, N. W. Hengartner, B. E. Takala, and S. A. Wender. Predicting the
number of fatal soft errors in los alamos national labratorys asc q computer. In IEEE Transactions on
Device and Materials Reliability, volume 5, pages 329–335, September 2005.

[16] N. Oh and E. J. McCluskey. Low energy error detection technique using procedure call duplication. In
Proceedings of the 2001 International Symposium on Dependable Systems and Networks, 2001.

[17] N. Oh, P. P. Shirvani, and E. J. McCluskey. Error detection by duplicated instructions in super-scalar
processors. In IEEE Transactions on Reliability, volume 51, pages 63–75, March 2002.

[18] F. Perry, L. Mackey, G. A. Reis, J. Ligatti, D. I. August, and D. Walker. Fault-tolerant typed assembly
language. In ACM SIGPLAN Conference on Programming Language Design and Implemenation
(PLDI), June 2007.

[19] F. Perry and D. Walker. Reasoning about control flow in the presence of transient faults. In
International Static Analysis Symposium, July 2008.

[20] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August. Swift: Software implemented
fault tolerance. In CGO ’05: Proceedings of the international symposium on Code generation and
optimization, pages 243–254, Washington, DC, USA, 2005. IEEE Computer Society.

[21] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August, and S. S. Mukherjee. Software-
controlled fault tolerance. ACM Trans. Archit. Code Optim., 2(4):366–396, 2005.

[22] P. P. Shirvani, N. Saxena, and E. J. McCluskey. Software implemented edac protection against seus.
In IEEE Transactions on Reliability, volume 49, pages 273–284, 2000.

[23] A. K. Wright and M. Felleisen. In A Syntactic Approach to Type Soundness, volume 115, pages 38–94,
1994.

[24] J. F. Ziegler and H. Puchner. Ser - history, trends, and challenges: A guide for designing with memory
ics. 2004.

15

http://lists.seas.upenn.edu/pipermail/poplmark/2008-April/000411.html
http://lists.seas.upenn.edu/pipermail/poplmark/2008-April/000411.html

	Introduction
	A Semantic Type-Safety Proof
	An Example: Fault-Tolerant List Machine
	Overview
	The Modified List Machine
	The Modified Typechecking Algorithm
	Fault Tolerance

	How Semantic and Syntactic Methods Scale
	Related Work
	Conclusion
	References

